Lobocrasol, a New Diterpenoid from the Soft Coral *Lobophytum crassum*

ORGANIC LETTERS

2009 Vol. 11, No. 14 3012-3014

Shih-Tseng Lin,† Shang-Kwei Wang,‡ Shi-Yie Cheng,† and Chang-Yih Duh*,†,§

Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Department of Microbiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan

yihduh@mail.nsysu.edu.tw

Received May 14, 2009

ABSTRACT

Lobocrasol (1), possessing an unprecedented diterpenoid skeleton, was isolated from the soft coral *Lobophytum crassum*. The structure of lobocrasol was established by extensive analysis of spectroscopic data.

Soft corals of the genus *Lobophytum* (Alcyoniidae) have proven to be a rich source of macrocyclic diterpenoids. ¹⁻³ Previous bioassay results of some macrocyclic diterpenoids have been shown to exhibit significant cytotoxic properties. ⁴⁻⁸ The continuing search for bioactive constituents prompted us to investigate the secondary metabolites of the soft coral *Lobophytum crassum* (Von Marenzeller, 1886). Our chemical examination of this soft coral has led to the isolation of lobocrasol (1), possessing an unprecedented diterpenoid skeleton.

The soft coral *Lobophytum crassum* was collected at Dongsha Island, Taiwan, in April 2007, at a depth of 6 m. The specimen was authenticated by Prof. C.-F. Dai, and a voucher specimen (TS-11) was deposited in the Department of Marine Biotechnology and Resources, National Sun Yatsen University. The bodies of the soft coral were freezedried (1.20 kg), which was extracted with acetone (2.0 L × 4). After removal of solvent in vacuo, the residue (36 g) was chromatographed over silica gel 60 using *n*-hexane and *n*-hexane-EtOAc mixtures of increasing polarity. Elution by *n*-hexane-EtOAc (1:9) afforded a fraction containing compound 1. Compound 1 (2 mg) was further purified by HPLC

^{*} To whom correspondence should be addressed. Tel.: 886-7-5252000 ext. 5036. Fax: 886-7-5255020.

[†] National Sun Yat-Sen University

[‡] Kaohsiung Medical University.

[§] Asia-Pacific Ocean Research Center.

⁽¹⁾ Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. *Nat. Prod. Rep* **2008**, *25*, 35–94, and literature cited in previous reviews.

⁽²⁾ Cheng, S.-Y.; Wen, Z.-H.; Wang, S.-K.; Chiou, S.-F.; Hsu, C.-H.; Dai, C.-F.; Duh, C.-Y. *Bioorg. Med. Chem.* **2009**, *17*, 3763–3769.

⁽³⁾ Cheng, S.-Y.; Wen, Z.-H.; Wang, S.-K.; Chiou, S.-F.; Hsu, C.-H.; Dai, C.-F.; Chiang, M. Y.; Duh, C.-Y. *J. Nat. Prod.* **2009**, *72*, 152–155.

⁽⁴⁾ Higuchi, R.; Miyamoto, T.; Yamada, K.; Komori, T. *Toxicon* **1998**, *36*, 1703–1705.

⁽⁵⁾ Matthee, G. F.; Konig, G. M.; Wright, A. D. J. Nat. Prod. 1998, 61, 237–240.

⁽⁶⁾ Wang, S.-K.; Duh, C.-Y.; Wu, Y.-C.; Wang, Y.; Cheng, M.-C.; Soong, K.; Fang, L.-S. J. Nat. Prod. 1992, 55, 1430–1435.

⁽⁷⁾ Coval, S. J.; Patton, R. W.; Petrin, J. M.; James, L.; Rothofsky, M. L.; Lin, S. L.; Patel, M.; Reed, J. K.; McPhil, A. T.; Bishop, W. R. *Biorg. Med. Chem. Lett.* **1996**, *6*, 909–912.

⁽⁸⁾ Duh, C.-Y.; Wang, S.-K.; Huang, B.-T.; Dai, C.-F. J. Nat. Prod. **2000**, 63, 884–885.

⁽⁹⁾ Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096.

(LiChrosorb RP-18, 7 μ , 25 × 250 mm), eluting with MeOH-H₂O (65:35).

Compound **1** was isolated as a colorless oil, $[\alpha]^{25}_D - 186$ (c 0.1, CHCl₃). The IR spectrum of **1** exhibited absorptions due to hydroxyl (3425 cm⁻¹) and conjugated enone (1698 cm⁻¹) functionalities. The presence of the conjugated enone was also confirmed by the UV spectrum $[\lambda_{max} (\log \epsilon) 230 \text{ nm } (3.58)]$. HRESIMS exhibited a pseudo molecular ion peak at m/z 357.2044 [M + Na]⁺, consistent with the molecular formula of $C_{20}H_{30}O_4$.

The structure of **1** was solved by a combination of 1D and 2D NMR methods. The resonances at $\delta_{\rm C}$ 205.3 (qC), 141.3 (qC), and 166.7 (qC), in the ¹³C NMR and DEPT spectra suggested the presence of a tetrasubstituted conjugated enone (Table 1). Furthermore, the presence of four oxygenated carbons was inferred from the carbon signals at $\delta_{\rm C}$ 73.1 (qC), 82.3 (qC), 82.1 (CH), and 75.5 (CH), a trisubstituted olefin at $\delta_{\rm C}$ 131.7 (qC) and 128.2 (CH). Six methylene groups were deduced from six triplet signals at $\delta_{\rm C}$ 38.3, 37.1, 33.9, 25.7, 22.1, and 20.3, a methine signal at $\delta_{\rm C}$ 61.1, and, finally, four methyl signals at $\delta_{\rm C}$ 13.3, 28.5, 23.5, and 14.8.

Table 1. 1 H and 13 C NMR data of **1** (400 and 100 MHz, respectively, in CDCl₃) (δ in ppm relative to TMS)

pos.	$\delta_{ ext{H}}{}^{a,b}$	$\delta_{\rm C}{}^a$
1		141.3 (qC)
2		205.3 (qC)
3	2.05 m	61.1 (CH)
4		83.3 (qC)
5	1.60 m, 3.16 dt (12.4, 8.8)	$33.9 (CH_2)$
6	1.74 m, 1.76 m	$25.7 (CH_2)$
7	3.57 dd (10.0, 6.4)	82.3 (CH)
8		73.1 (qC)
9	1.54 m	$38.3 (CH_2)$
10	2.04 m, 1.92 m	$22.1 (CH_2)$
11	4.84 t (7.2)	128.2 (CH)
12		131.7 (qC)
13	2.48 m, 2.00 m	$37.1 (CH_2)$
14	2.48 m, 2.24 m	$20.3 (CH_2)$
15		166.7 (qC)
16	4.80 d (6.4)	75.5 (CH)
17	$2.08 \mathrm{\ s}$	$13.3 (CH_3)$
18	$1.37 \mathrm{\ s}$	$28.5 (CH_3)$
19	1.09 s	$23.5 (CH_3)$
20	1.59 s	$14.8 (CH_3)$

 $[^]a$ Assigned by DEPT, COSY, HSQC, and HMBC experiments. b Coupling constant in Hz in parentheses.

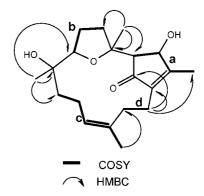


Figure 1. Key COSY and HMBC correlations of 1.

The combined use of $^1H^{-1}H$ COSY and HMQC on 1 allowed us to distinguish four spin systems (see $\mathbf{a} - \mathbf{d}$ in Figure 1). A HMBC experiment was used to assemble the skeletal fragments through quaternary carbons and heteroatoms. Thus, these substructures were connected through HMBC correlations between the protons H_2 -14 (δ_H 2.48 and 2.24) and the carbons C-1 (δ_C 141.3), C-2 (δ_C 205.3), C-15 (δ_C 166.7), and C-12 (δ_C 131.7), between the methyl protons Me-20 (δ_H 1.59) and the carbons C-13 (δ_C 37.1), between the methine proton H-3 (δ_H 2.05) and carbon C-2, between the methyl protons Me-19 and the carbon C-7, C-8 and C-9, between the methyl protons Me-18 (δ_H 1.37) and carbons C-3 (δ_C 61.1), C-4 (δ_C 83.3), and C-5 (δ_C 33.9). These relationships are represented in Figure 1.

All of these data allowed us to identify compound **1** as a new diterpenoid with a novel skeleton. With the gross structure of **1** in hand, the relative stereochemistry of compound **1** was deduced from NOESY correlations and Chem3D Ultra 9.0 (Figure 2). The *Z* geometry of the Δ^{11} double bond was established by the NOESY correlation observed between H-11 and H₃-20. NOESY correlations of H-7 with H₃-19 indicated that these protons are on the same face of the ring system, whereas those of H₃-18 with H-16 were used to place them on the opposite face of the ring system, thereby establishing the relative configuration of **1**.

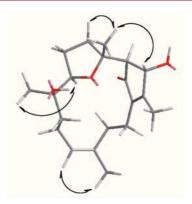


Figure 2. Key NOESY correlations of 1.

Org. Lett., Vol. 11, No. 14, 2009

Figure 3. Absolute stereochemistry of 1: δ values $(\delta_S - \delta_R)$ in ppm for the two MTPA esters **1a** and **1b**.

The α proton at C-5 appearing at $\delta_{\rm H}$ 3.16 (1.5 ppm downfield from its companion) was due to the deshielding effect of C-2 carbonyl, which was oriented to the α face of the molecule as shown in Figure 2.

The absolute configuration of **1** was determined by application of the modified Mosher method. Treatment of **1** with (S)-MTPA chloride and (R)-MTPA chloride afforded the (R)-MTPA ester (**1a**) and (S)-MTPA ester (**1b**), respectively. The difference in chemical shift values ($\delta_S - \delta_R$) for the diastereomeric esters **1b** and **1a** was calculated in order to assign the absolute configuration at C-11. Calculations for all of the relevant signals suggested the 16S absolute configuration. Therefore, the 3S, 4S, 7R, and 8R absolute configuration was proposed for **1** on the basis of the $\Delta\delta$ results summarized in Figure 3.

Scheme 1. Plausible Biosynthetic Pathway for 1

Compound 1 exhibited cytotoxicity against the P-388 cell with ED₅₀ of 3.2 μ g/mL. Biogenetically, lobocrasol (1) may be an aldol condensation product of an aldehyde analogue (2) (Scheme 1).

Acknowledgment. We thank J. M. Pezzuto, formerly of Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, for providing P-388 cell line. Financial support was provided by the National Science Council (NSC96-2320-B-110-003-MY3) and Ministry of Education (97C031703) of the Republic of China (Taiwan) awarded to C.-Y.D.

Supporting Information Available: ¹H NMR, ¹³C NMR, ¹H-¹H COSY, NOESY, HMQC, and HMBC spectra for **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901070E

3014 Org. Lett., Vol. 11, No. 14, 2009